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In this article, an extension of the finite element technique to the analysis of the acoustic
radiation is presented. In the proposed approach, the acoustic domain is split into two parts
by an arbitrary artificial boundary enclosing the radiating surface. Then the unbounded
medium is discretized with finite elements consisting of only one or two rows in the radial
direction up to the artificial boundary. To represent the farfield behaviour, the constraint
equation specified on the artificial boundary is formulated with a more straightforward
boundary integral equation, in which the source surface coincides with the radiating surface
discretized with boundary elements. To ensure the uniqueness of the numerical solution,
the composite Helmholtz integral equation proposed by Burton and Miller was adopted.
Due to the avoidance of singularity problems inherent in the boundary element
formulation, this method is very efficient and easy to implement in an isoparametric element
environment. In numerical experiments involving spherical and cubical radiators, it has
been demonstrated that the proposed method eliminates the difficulties when the FEM
handles the exterior acoustics. It should be noted that the method can be extended to the
computation on other branches of the classical field theory.
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1. INTRODUCTION

The determination of the acoustic field radiated by an arbitrary shaped vibrating structure
immersed in an infinite homogeneous acoustic medium is of considerable interest in many
areas including underwater acoustics and aeronautics.

Of various numerical methods used in mechanical engineering, the Finite Element
Method (FEM) is perhaps the most popular. The field of acoustics can be solved entirely
through finite element modelling, which started in the mid-1960s with a paper by Melvyn
[1]. This technique gives satisfactory solutions in an enclosed space [2–5]. However, the
FEM is best suited to finite rather than infinite geometries. In the case of exterior acoustics,
where the fluid occupies an unbounded domain, the vast amount of data to be handled
makes it difficult to apply the FEM. A classical finite element model of the problem
requires that the mesh of elements be extended sufficiently far away from the vibrating
surface so that the conditions imposed on the boundary of the mesh do not have an
appreciative effect on the solution in the vicinity of the surface. In addition, special care
has to be taken to insure the Sommerfeld radiation condition at infinity [6, 7], which
enforces that no energy is radiated from infinity towards the obstacle. This radiation
condition can be incorporated in certain analytical solutions and in particular the DtN
(Dirichlet-to-Neumann) boundary conditions [8–11]. The DtN conditions have infinite
series, and hence must be truncated after a finite number of terms. The unbounded medium
can also be modelled approximately with infinite elements [12–17]. The element domain
is extended to infinity, using as a basis any original finite element. Decay functions
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representing the wave propagation towards infinity are used as the shape functions. Several
excellent books [18–20] give details of infinite element concepts. However, the
infinite-element method is not exact in the finite element sense [20].

The Boundary Integral Equation Method (BIEM) has long been an effective numerical
technique for acoustic problems [21–24]. The main feature of this method is that it can
handle the Sommerfeld radiation condition automatically. Although the BIEM is regarded
as the most powerful procedure for modelling the unbounded medium in many areas of
engineering, it needs quite sophisticated mathematics. One of the main difficulties in the
BIEM for acoustic problems is that the Helmholtz integral equation has some singular
integrals of high order. Extensive work has been done to address this shortcoming [25–28].
Unfortunately, the end result is always to increase the complexity, and thus the extent,
of the computations.

The search to find a simpler, more straightforward computational method that
circumvents the above difficulties was the motivation behind this study. The proposed
scheme is based on finite element and boundary element concepts. It is in some ways similar
to the work of Givoli and Cohen [10], in which the non-reflecting boundary conditions
based on Kirchhoff-type formulae were used to solve time-domain problems. In the
proposed approach, the acoustic domain is split into two parts by an arbitrary artificial
boundary enclosing the radiating surface. Then the unbounded medium is discretized with
finite elements consisting of one or two rows only in the radial direction up to the artificial
boundary (Figure 1). To represent the farfield behaviour, the constraint equation specified
on the artificial boundary is formulated with a more straightforward boundary integral
equation, in which the source surface coincides with the radiating surface discretized with
boundary elements. Thus, the Sommerfeld radiation condition at the farfield boundary is
automatically satisfied. Note that in this method, unlike the existing combined finite
element and boundary element subregion methods [29], the field points of the kernels of
the integrals are restricted to exterior regions well away from radiating boundaries. So the
difficulty of a singular integral can be avoided. Although this coupling strategy is very
simple, it is not widely used. Lenoir and Jami [30] have developed a variational formulation
of the approach, and applied it to two-dimensional hydrodynamics. However, this method
fails to provide a unique solution at certain characteristic frequencies that depend on the
shape of the body, the boundary conditions imposed, and the shape of the artificial

Figure 1. The partitioned domain.
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boundary. In this paper, a modified formulation uses the composite Helmholtz integral
equation proposed by Burton and Miller [25] to ensure the uniqueness of the numerical
solution at all frequencies. It is shown in the applications that this method is very efficient
and easy to implement in an isoparametric element environment.

2. FINITE ELEMENT FORMULATION

The formulation of the finite element method for time harmonic acoustic wave
propagation is well documented [2, 31]. The method produces a matrix equation of the
form

[k2[M]− [K]]{f}= {f} (1)

where k is the wavenumber, [M] is the acoustic mass matrix, [K] is the acoustic stiffness
matrix, {f} is the vector of acoustic potential function, and {f} is the acoustic forcing
vector.

The formulation used in equation (1) is

[M]e =gV

{N}{N}T dV, [K]e =gV

[9N][9N]T dV (2, 3)

and

{f}e =ivr gS

{NS}{NS}T{vn} dS=−gS

{NS}{NS}T61f

1n7 dS, (4)

where r is the fluid density, v is the angular frequency, vn is the normal particle velocity,
1f/1n=−ivrvn is the acoustic potential gradient, {N} is the vector of shape functions,
and [9N] is a matrix of shape function derivatives of m-node element of the form
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The e subscript indicates that the matrices are formulated for a single element. Note that
{f} is evaluated using boundary integrals rather than volume integrals, and {Ns} used in
equation (4) denotes the vector of shape function for the surface of integration.

Equation (1) can be represented by the following matrix equation,

[A]{f}=[B]61f

1n7, (6)

where [A]= k2[M]− [K], and [B]=−fS {NS}{NS}T dS.
The interior boundary of the finite element region coincides with the radiating surface

and its exterior boundary with the artificial boundary. Partitioning into the nodes lying
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on the interior (index i) and exterior (index e) boundaries, and the remaining nodes (index
r) yields

[Ai Ar Ae ]8fi

fr

fe9=[Bi Be ]6(1f/1n)i

(1f/1n)e7. (7)

3. BOUNDARY INTEGRAL FORMULATION FOR CONSTRAINT EQUATIONS

To satisfy the Sommerfeld radiation condition, a boundary condition must be
introduced on the artificial boundary. It can be formulated straightforwardly with the
following classical Helmholtz integral equation:

4pf(P)=gSi
$f(Q)

1Gk (P, Q)
1nq

−Gk (P, Q)
1f(Q)

1nq % dSi , (8)

which is valid for an acoustic medium exterior to a vibrating surface Si , k is the
wavenumber; f is the acoustic potential function; 1/1nq represents an outward normal
derivative with respect to the body S; and the function Gk is the free-space Green’s function

Gk (P, Q)=
e−ikR(P,Q)

R(P, Q)
, (9)

where R(P, Q)= =P−Q= is the physical distance between points P and Q. The required
integrations can be carried out using the standard Gaussian quadrature because, with the
point P not on the radiating surface, none of the kernel functions is singular.

For numerical implementation, the matrix form of equation (8) may be expressed as

{f(P)}=[C]{f(Q)}−[D]61f(Q)
1nq 7. (10)

Because the vibrating surface coincides with the interior boundary (index i) of the finite
element region and the field points are located on the artificial boundary (index e),
equation (10) can be written as

{fe}=[C]{fi}−[D]601f

1n1i7. (11)

To eliminate the problem of uniqueness at critical wavenumber, one can employ the
Burton and Miller formulation [25] which uses a linear combination of the Helmholtz
integral equation and its normal derivative as follows:

4p$f(P)+ a
1f(P)

1np %=gSi
$f(Q)

1Gk (P, Q)
1nq

−Gk (P, Q)
1f(Q)

1nq % dSi ,

+ a gSi
$f(Q)

12Gk (P, Q)
1np 1nq

−
1Gk (P, Q)

1np

1f(Q)
1nq % dSi , (12)
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where a is a coupling constant. Similarly, the matrix form of equation (12) may be
expressed as

{fe}+6a01f

1n1e7=[C*]{fi}−[D*]601f

1n1i7. (13)

4. SOLUTION OF THE SYSTEM

Now, combining equations (7) and (11) yields

fi
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and combining equations (7) and (13) yields
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Figure 2. Vicinity of one octant of a sphere modelled using twelve 20-noded finite elements and twelve 8-noded
boundary elements.
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T 1

Results for a pulsating sphere

k Analytical solution Equation (14) Equation (15)

1 0·5403−0·8415i −0·5400−0·8417i −0·5400−0·8416i
2 −0·4161−0·9093i −0·4168−0·9120i −0·4155−0·9101i
3 −0·9900−0·1411i −0·9915−0·1498i −0·9914−0·1477i
p −1·0000+0·0000i −0·5402−1·7132i −1·0024−0·0092i
4 −0·6536+0·7568i −0·6428+0·7816i −0·6506+0·8025i
5 0·2837+0·9589i 0·3040+0·9742i 0·3033+0·8942i
6 0·9602+0·2794i 0·9781+0·2641i 0·9536+0·2969i
2p 1·0000+0·0000i 0·7241+4·6575i 0·9987+0·0204i

where I is the identity or unit matrix.
One can reorder equations (14) and (15) with all the unknowns fi and (1f/1n)i on the

left side and a vector on the right side obtained by multiplying matrix elements by the
known values of acoustic potential and potential gradient. Once the boundary values of
the acoustic potential and its gradient have been computed at all the nodal points on the
radiating surface, it is a straightforward matter to calculate the exterior potential at any
desired point using equation (8).

5. NUMERICAL TESTS

In order to confirm the validity of the proposed formulation, we examine two test cases.
Radiation from a uniformly pulsating sphere of unit radius is a basic problem of

acoustics. The surface velocity is given by

1f

1n
=

(−1− ikr) e−ikr

r2 , (16)

Figure 3. Vicinity of one-eight of a cube modelled using seven 20-noded finite elements and three 8-noded
boundary elements.
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where k is the wavenumber and r is the radius of sphere. The corresponding dimensionless
surface potential is

f=
e−ikr

r
. (17)

T 2

Results at point A for a pulsating cube

k Analytical solution Computed result

0·5 1·9378−0·4948i 1·9012−0·4883i
1·0 1·7552−0·9589i 1·7215−0·9480i
1·5 1·4634−1·3633i 1·4316−1·3495i
2·0 1·0806−1·6829i 1·0474−1·6651i
2·5 0·6306−1·8980i 0·6006−1·8566i
3·0 0·1415−1·9950i 0·1392−2·0146i

T 3

Results at point B for a pulsating cube

k Analytical solution Computed result

0·5 1·7194−0·4935i 1·6912−0·4870i
1·0 1·5166−0·9487i 1·4918−0·9381i
1·5 1·1960−1·3303i 1·1741−1·3173i
2·0 0·7825−1·6086i 0·7606−1·5943i
2·5 0·3084−1·7621i 0·2809−1·7275i
3·0 −0·1897−1·7788i −0·1840−1·8117i

T 4

Results at point C for a pulsating cube

k Analytical solution Computed result

0·5 1·3267−0·4897i 1·3140−0·4832i
1·0 1·0752−0·9187i 1·0663−0·9080i
1·5 0·6906−1·2342i 0·6853−1·2207i
2·0 0·2205−1·3969i 0·2172−1·3798i
2·5 −0·2768−1·3869i −0·2893−1·3493i
3·0 −0·7398−1·2053i −0·7152−1·2297i

T 5

Results at point D for a pulsating cube

k Analytical solution Computed result

0·5 1·2407−0·4884i 1·2273−0·4819i
1·0 0·9756−0·9089i 0·9664−0·8984i
1·5 0·5749−1·2030i 0·5698−1·1906i
2·0 0·0943−1·3300i 0·0913−1·3159i
2·5 −0·3994−1·2721i −0·4128−1·2408i
3·0 −0·8376−1·0374i −0·8186−1·0610i
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T 6

Results at point E for a pulsating cube

k Analytical solution Computed result

0·5 1·0481−0·4845i 1·0397−0·4781i
1·0 0·7481−0·8796i 0·7440−0·8693i
1·5 0·3100−1·1123i 0·3103−1·1000i
2·0 −0·1854−1·1397i −0·1817−1·1251i
2·5 −0·6465−0·9567i −0·6483−0·9467i
3·0 −0·9883−0·5972i −0·9612−0·6183i

A spherical artificial boundary of radius 2·0 was selected. Figure 2 shows the element
definition for the vicinity of an octant of the radiating surface used in this test case. Due
to the symmetric property of the boundary condition, only a quarter of the acoustic
domain was modelled. With the boundary integral formulation, symmetry was obtained
by reflecting each integration point to the other parts. The finite element region was
discretized by one layer of twenty-four 20-noded brick elements, and the radiating surface
had twenty-four 8-noded quadrilateral boundary elements. A 4-point Gaussian quadrature
formula was used for the numerical integration over each element. The computed results
from equations (14) and (15) are given in Table 1. It can be seen that consistently good
results were obtained with equation (15) whilst equation (14) failed at the characteristic
wavenumbers.

As a truly three-dimensional problem, the second case tests the radiation by a pulsating
cube of unit length. The normal velocity on the cubical surface is produced by a point
source of spherical dilatation wave with unit intensity located at the cubical center. A
cubical artificial boundary is introduced of length 2. Because of the symmetric boundary
condition, one-quarter of the computational domain was discretized by fourteen 20-noded
brick elements and six 8-noded quadrilateral boundary elements. Figure 3 shows the
element definitions for one-eight of the acoustic field. The computed results at selected
points shown in Figure 3 are tabulated in Tables 2–6. Acceptable results were obtained
once again, the maximum relative error being 3·0% for the corner node at k=3.

6. CONCLUSIONS

This paper has presented a finite element based approach with constraint equation
formulated by boundary integral equation to the exterior acoustic radiation. The main
feature of the proposed method is that it can handle the Sommerfeld radiation condition
automatically, and the implementation is very straightforward because of the absence of
integral singularities and sophisticated mathematics. By comparing the numerical results
with the analytical solutions, it has been demonstrated that the proposed method
eliminates the difficulties when the FEM handles the exterior acoustics. Theoretically, this
technique can also be applied to the problems in bounded interior domains. It should be
noted that the method can be extended to the computation on other branches of the
classical field theory, and the implementation in a existing finite element code is quite easy.
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